Lecture 3

- **More on Maxwell**
- **Wave Equations**
- **Boundary Conditions**
- **Poynting Vector**
- Transmission Line

Maxwell's equations in differential form

$$\nabla . \mathbf{D} = \rho$$
 Gauss' law for electrostatics
$$\nabla . \mathbf{B} = 0$$
 Gauss' law for magnetostatics
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
 Ampere's law
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 Faraday's law
$$\nabla . \mathbf{J} = -\frac{\partial \rho}{\partial t}$$
 Equation of continuity

$$\mathbf{D} = \varepsilon \mathbf{E}$$
$$\mathbf{B} = \mu \mathbf{H}$$

• Varying E and H fields are coupled

Electromagnetic waves in lossless media - Maxwell's equations

Maxwell

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{dt}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{dt}$$

$$\nabla . \mathbf{D} = \rho$$

$$\nabla . \mathbf{B} = 0$$

Equation of continuity

$$\nabla . \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

Constitutive relations

$$\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_r \varepsilon_o \mathbf{E}$$

$$\mathbf{B} = \mu \mathbf{H} = \mu_r \mu_o \mathbf{H}$$

$$J = \sigma E$$

SI Units

- J Amp/ metre²
- *D* Coulomb/metre²
- *H* Amps/metre
- B Tesla
 Weber/metre²
 Volt-Second/metre²
- *E* Volt/metre
- ε Farad/metre
- µ Henry/metre
- σ Siemen/metre

Wave equations in free space

In free space

$$- \sigma = 0 \Rightarrow J = 0$$

- Hence:
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{dt} = \frac{\partial \mathbf{D}}{dt}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{dt}$$

- Taking curl of both sides of latter equation:

$$\nabla \times \nabla \times \mathbf{E} = -\nabla \times \frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial}{\partial t} \nabla \times \mathbf{B} = -\mu_o \frac{\partial}{\partial t} \nabla \times \mathbf{H}$$

$$= -\mu_o \, \frac{\partial}{\partial t} \left(\frac{\partial \mathbf{D}}{\partial t} \right)$$

$$\nabla \times \nabla \times \mathbf{E} = -\mu_o \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Wave equations in free space cont.

$$\nabla \times \nabla \times \mathbf{E} = -\mu_o \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

• It has been shown (last week) that for any vector **A**

$$\nabla \times \nabla \times \mathbf{A} = \nabla \nabla \cdot \mathbf{A} - \nabla^2 \mathbf{A}$$

where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the *Laplacian* operator Thus:

$$\nabla \nabla . \mathbf{E} - \nabla^2 \mathbf{E} = -\mu_o \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

• There are no free charges in free space so $\nabla .\mathbf{E} = \rho = 0$ and we get

$$\nabla^2 \mathbf{E} = \mu_o \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

A three dimensional wave equation

Wave equations in free space cont.

• Both **E** and **H** obey second order partial differential wave equations:

$$\nabla^2 \mathbf{E} = \mu_o \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
$$\nabla^2 \mathbf{H} = \mu_o \varepsilon \frac{\partial^2 \mathbf{H}}{\partial t^2}$$

- What does this mean
 - dimensional analysis ?

$$\frac{\text{Volts/metre}}{\text{metre}^2} = \mu_o \varepsilon \frac{\text{Volts/metre}}{\text{seconds}^2}$$

- μ_oε has units of velocity⁻²
- Why is this a wave with velocity $1/\sqrt{\mu_o \varepsilon}$?

Uniform plane waves - transverse relation of E and H

• Consider a uniform plane wave, propagating in the z direction. **E** is independent of x and y

$$\frac{\partial \mathbf{E}}{\partial x} = 0 \qquad \qquad \frac{\partial \mathbf{E}}{\partial y} = 0$$

In a source free region, ∇ .**D**= ρ =0 (Gauss' law):

$$\nabla .\mathbf{E} = \frac{\partial \mathbf{E}_{x}}{\partial x} + \frac{\partial \mathbf{E}_{y}}{\partial y} + \frac{\partial \mathbf{E}_{z}}{\partial z} = 0$$

E is independent of x and y, so

$$\frac{\partial E_x}{\partial x} = 0, \ \frac{\partial E_y}{\partial y} = 0 \qquad \Rightarrow \qquad \frac{\partial E_z}{\partial z} = 0 \qquad \Rightarrow E_z = 0 \qquad (E_z = \text{const is not a wave})$$

- So for a plane wave, E has no component in the direction of propagation. Similarly for H.
- Plane waves have only transverse **E** and **H** components.

Orthogonal relationship between E and H:

• For a plane z-directed wave there are no variations along x and y:

$$\nabla \times \mathbf{H} = -\mathbf{a}_{x} \frac{\partial H_{y}}{\partial z} + \mathbf{a}_{y} \frac{\partial H_{x}}{\partial z}$$

$$= \frac{\partial \mathbf{D}}{\partial t}$$

$$= \varepsilon \left(\mathbf{a}_{x} \frac{\partial E_{x}}{\partial t} + \mathbf{a}_{y} \frac{\partial E_{y}}{\partial t} + \mathbf{a}_{y} \frac{\partial E_{z}}{\partial t} \right)$$

$$\nabla \times A = \mathbf{a}_{x} \left(\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z} \right) +$$

$$\mathbf{a}_{y} \left(\frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x} \right) +$$

$$\mathbf{a}_{z} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right)$$

$$\nabla \times \mathbf{H} = \mathbf{X} + \frac{\partial \mathbf{D}}{\partial t}$$

• Equating terms:

$$-\frac{\partial H_{y}}{\partial z} = \varepsilon \frac{\partial E_{x}}{\partial t}$$
$$\frac{\partial H_{x}}{\partial z} = \varepsilon \frac{\partial E_{y}}{\partial t}$$

• and likewise for $\nabla \times \mathbf{E} = -\mu_o \partial \mathbf{H}/\partial t$:

$$\frac{\partial E_{y}}{\partial z} = \mu_{o} \frac{\partial H_{x}}{\partial t}$$
$$\frac{\partial E_{x}}{\partial z} = \mu_{o} \frac{\partial H_{y}}{\partial t}$$

Spatial rate of change of H is proportionate to the temporal rate of change of the orthogonal component of E & v.v. at the same point in space RF and Microwave Physics Fall 2002 ANL

Orthogonal and phase relationship between E and H:

• Consider a linearly polarised wave that has a transverse component in (say) the *y* direction only:

$$E_{y} = E_{o}f(z - vt)$$

$$\Rightarrow \varepsilon \frac{\partial E_{y}}{\partial t} = -\varepsilon v E_{o}f'(z - vt) = \frac{\partial H_{x}}{\partial z}$$

$$\Rightarrow H_{x} = -\varepsilon v E_{o} \int f'(z - vt) dz + const = -\varepsilon v E_{o}f(z - vt)$$

$$= -\varepsilon v E_{y}$$

$$H_{x} = -\sqrt{\frac{\varepsilon}{u}} E_{y}$$

Similarly

$$H_{y} = \sqrt{\frac{\varepsilon}{\mu_{o}}} E_{x}$$

 $\frac{\partial E_{y}}{\partial z} = \mu_{o} \frac{\partial H_{x}}{\partial t}$ $\frac{\partial E_{x}}{\partial z} = \mu_{o} \frac{\partial H_{y}}{\partial t}$

H and E are in phase and orthogonal

advanced photon source

$$H_x = -\sqrt{\frac{\varepsilon}{\mu_o}} E_y$$

$$H_{y} = \sqrt{\frac{\varepsilon}{\mu_{o}}} E_{x}$$

• The ratio of the magnetic to electric fields strengths is:

$$\frac{\sqrt{E_x^2 + E_y^2}}{\sqrt{H_x^2 + H_y^2}} = \frac{E}{H} = \sqrt{\frac{\mu_o}{\varepsilon}} = \eta$$

which has units of impedance

$$\frac{Volts / metre}{amps / metre} = \Omega$$

• and the *impedance of free space* is:

$$\sqrt{\frac{\mu_o}{\varepsilon_o}} = \sqrt{\frac{4\pi \times 10^{-7}}{\frac{1}{36\pi} \times 10^{-9}}} = 120\pi = 377\Omega$$

Note:

$$\frac{E}{B} = \frac{E}{\mu_o H} = \frac{1}{\sqrt{\mu_o \varepsilon_o}} = c$$

Orientation of E and H

• For any medium the intrinsic impedance is denoted by η

$$\eta = -\frac{E_y}{H_x} = \frac{E_x}{H_y}$$

and taking the scalar product

$$\mathbf{E.H} = E_x H_x + E_y H_y$$
$$= \eta H_y H_x - \eta H_x H_y = 0$$

so E and H are mutually orthogonal

• Taking the cross product of **E** and **H** we get the direction of wave propagation

$$\mathbf{E} \times \mathbf{H} = \mathbf{a}_z \left(E_x H_y - E_y H_x \right)$$
$$= \mathbf{a}_z \left(\eta H_y^2 - \eta H_x^2 \right)$$

$$\mathbf{E} \times \mathbf{H} = \mathbf{a}_z \eta H^2$$

$$\mathbf{A} \times \mathbf{B} = \mathbf{a}_{x} (A_{y}B_{z} - A_{z}B_{y}) +$$

$$\mathbf{a}_{y} (A_{z}B_{x} - A_{x}B_{z}) +$$

$$\mathbf{a}_{z} (A_{x}B_{y} - A_{y}B_{x})$$

A 'horizontally' polarised wave

- Sinusoidal variation of E and H
- E and H in phase and orthogonal

$$H_{y} = \sqrt{\frac{\varepsilon}{\mu_{o}}} E_{x}$$

A block of space containing an EM plane wave

- Every point in 3D space is characterised by
 - $-E_{x}, E_{y}, E_{z}$
 - Which determine
 - H_x, H_y, H_z
 and vice versa
 - 3 degrees of freedom

Power flow of EM radiation

Energy stored in the EM field in the thin box is:

$$dU = dU_E + dU_H = (u_E + u_H)Adx$$

$$dU = \left(\frac{\varepsilon E^2}{2} + \frac{\mu_o H^2}{2}\right)Adx$$

$$= \varepsilon E^2 A \mathrm{d} x$$

$$u_E = \frac{\varepsilon E^2}{2}$$

$$u_H = \frac{\mu_o H^2}{2}$$

$$H_{y} = \sqrt{\frac{\varepsilon}{\mu_{o}}} E_{x}$$

Power transmitted through the box is dU/dt=dU/(dx/c)...

Power flow of EM radiation cont.

$$dU = \varepsilon E^2 A dx$$

$$S = \frac{dU}{Adt} = \frac{\varepsilon E^2}{A(dx/c)} A dx = \sqrt{\frac{\varepsilon}{\mu_o}} = \frac{E^2}{\eta} \quad \text{W/m}^2$$

- This is the instantaneous power flow
 - Half is contained in the electric component
 - Half is contained in the magnetic component
- E varies sinusoidal, so the average value of S is obtained as: $E = E_o \sin \frac{2\pi}{\lambda} (z vt)$

$$S = \frac{E_o^2 \sin^2(z - vt)}{n}$$

$$\overline{S} = \frac{E_o^2}{\eta} RMS \left(E_o^2 \sin^2(z - vt) \right) = \frac{E_o^2}{2\eta}$$

• S is the Poynting vector and indicates the direction and magnitude of power flow in the EM field.

Example problem

- The door of a microwave oven is left open
 - estimate the peak E and H strengths in the aperture of the door.
 - Which plane contains both E and H vectors ?
 - What parameters and equations are required?
 - Power-750 W
 - Area of aperture 0.3 x 0.2 m
 - impedance of free space 377 Ω
 - Poynting vector:

$$S = \frac{E^2}{\eta} = \eta H^2 \quad \text{W/m}^2$$

Solution

$$Power = SA = \frac{E^2}{\eta}A = \eta H^2 A$$
 Watts

$$E = \sqrt{\eta \frac{Power}{A}} = \sqrt{377 \frac{750}{0.3.0.2}} = 2,171 \text{V/m}$$

$$H = \frac{E}{\eta} = \frac{2170}{377} = 5.75 \text{A/m}$$

$$B = \mu_o H = 4\pi \times 10^{-7} \times 5.75 = 7.2 \mu Tesla$$

Constitutive relations

- permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$
- permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$
- Normally ε_r (dielectric constant) and μ_r
 - vary with material
 - are frequency dependant
 - For non-magnetic materials $\mu_r \sim 1$ and for Fe is $\sim 200,000$
 - ε_r is normally a few ~2.25 for glass at optical frequencies
 - are normally simple scalars (i.e. for *isotropic* materials) so that **D** and **E** are parallel and **B** and **H** are parallel
 - For ferroelectrics and ferromagnetics ε_r and μ_r depend on the relative orientation of the material and the applied field:

$$\begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix} = \begin{pmatrix} \mu_{xx} & \mu_{xy} & \mu_{xz} \\ \mu_{yx} & \mu_{yy} & \mu_{yz} \\ \mu_{zx} & \mu_{zy} & \mu_{zz} \end{pmatrix} \begin{pmatrix} H_x \\ H_y \\ H_z \end{pmatrix}$$

frequencies:

ANL

At microwave frequencies:
$$\mu_{ij} = \begin{pmatrix} \mu & -j\kappa & 0 \\ j\kappa & \mu & 0 \\ 0 & 0 & \mu_o \end{pmatrix}$$

 $\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_r \varepsilon_o \mathbf{E}$

 $J = \sigma E$

 $\mathbf{B} = \mu \mathbf{H} = \mu_r \mu_o \mathbf{H}$

Constitutive relations cont...

- What is the relationship between ε and refractive index for non magnetic materials?
 - -v=c/n is the speed of light in a material of refractive index n

$$v = \frac{1}{\sqrt{\mu_o \varepsilon_o \varepsilon_r}} = \frac{c}{n}$$

$$n = \sqrt{\varepsilon}$$

- For glass and many plastics at optical frequencies
 - n~1.5
 - $\varepsilon_{\rm r} \sim 2.25$
- Impedance is lower within a dielectric

$$\eta = \sqrt{\frac{\mu_o \mu_r}{\varepsilon_o \varepsilon_r}}$$

What happens at the boundary between materials of different n, μ_r, ε_r ?

Why are boundary conditions important?

- When a free-space electromagnetic wave is incident upon a medium secondary waves are
 - transmitted wave
 - reflected wave
- The transmitted wave is due to the **E** and **H** fields at the boundary as seen from the incident side
- The reflected wave is due to the **E** and **H** fields at the boundary as seen from the transmitted side
- To calculate the transmitted and reflected fields we need to know the fields at the boundary
 - These are determined by the boundary conditions

Boundary Conditions cont.

$$\mu_1, \varepsilon_1, \sigma_1$$

$$\mu_2, \varepsilon_2, \sigma_2$$

- At a boundary between two media, μ_r , $\varepsilon_r \sigma$ are different on either side.
- An abrupt change in these values changes the characteristic impedance experienced by propagating waves
- Discontinuities results in partial reflection and transmission of EM waves
- The characteristics of the reflected and transmitted waves can be determined from a solution of Maxwells equations along the boundary

Boundary conditions

• The tangential component of **E** is continuous at a surface of discontinuity

$$-E_{1t}=E_{2t}$$

• Except for a perfect conductor, the tangential component of **H** is continuous at a surface of discontinuity

$$-H_{1t}=H_{2t}$$

E_{1t}, H_{1t}	$\mu_1, \varepsilon_1, \sigma_1$
E_{2t}, H_{2t}	$\mu_2, \varepsilon_2, \sigma_2$

- The normal component of **D** is continuous at the surface of a discontinuity if there is no surface charge density. If there is surface charge density **D** is discontinuous by an amount equal to the surface charge density.
 - $-D_{1n} = D_{2n} + \rho_s$
- The normal component of B is continuous at the surface of discontinuity

$$-B_{1n} = R_{5n}$$
 Microwave Physics

Fall 2002

ANL

Proof of boundary conditions - $\underline{\mathbf{D}}_{n}$

• The integral form of Gauss' law for electrostatics is:

$$\oint \mathbf{D}.d\mathbf{A} = \iiint_{V} \rho dV$$

applied to the box gives

$$D_{n1}\Delta x \Delta y - D_{n2}\Delta x \Delta y + \Psi_{\text{edge}} = \rho_s \Delta x \Delta y$$

As $dz \to 0, \Psi_{\text{edge}} \to 0$ hence

$$D_{n1} - D_{n2} = \rho_s$$

The change in the normal component of **D** at a boundary is equal to the surface charge density

ANL

Proof of boundary conditions - $\underline{\mathbf{D}}_{\mathbf{n}}$ cont.

$$D_{n1} - D_{n2} = \rho_s$$

• For an insulator with no static electric charge $\rho_s = 0$ $D_{n1} = D_{n2}$

• For a conductor all charge flows to the surface and for an infinite, plane surface is uniformly distributed with area charge density $\rho_{\rm s}$

In a good conductor, σ is large, $\mathbf{D} = \varepsilon \mathbf{E} \approx 0$ hence if medium 2 is a good conductor

$$D_{n1} = \rho_s$$

Proof of boundary conditions - $\underline{\mathbf{B}}_{n}$

- Proof follows same argument as for D_n on page 47,
- The integral form of Gauss' law for magnetostatics is

$$\oint \mathbf{B}.d\mathbf{A} = 0$$

there are no isolated magnetic poles

$$B_{n1}\Delta x \Delta y - B_{n2}\Delta x \Delta y + \Psi_{\text{edge}} = 0$$

$$\Rightarrow B_{n1} = B_{n2}$$

The normal component of **B** at a boundary is always continuous at a boundary

Conditions at a perfect conductor

- In a perfect conductor σ is infinite
- Practical conductors (copper, aluminium silver) have very large σ and field solutions assuming infinite σ can be accurate enough for many applications
 - Finite values of conductivity are important in calculating
 Ohmic loss
- For a conducting medium
 - $J = \sigma E$
 - infinite $\sigma \Rightarrow$ infinite **J**
 - More practically, σ is very large, **E** is very small (\approx 0) and **J** is finite

Conditions at a perfect conductor

- It will be shown that at high frequencies **J** is confined to a surface layer with a depth known as the skin depth
- With increasing frequency and conductivity the skin depth, δx becomes thinner

It becomes more appropriate to consider the current density in terms of current per unit with:

$$\lim_{\delta x \to 0} \mathbf{J}_{s} \quad A/m$$
Fall 2002 ANL

Conditions at a perfect conductor cont.

• Ampere's law:

• Ampere's law:
$$\oint \mathbf{H}.d\mathbf{s} = \iint_{A} \left(\frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \right).d\mathbf{A}$$

$$H_{y2} \frac{\Delta y}{2} + H_{y1} \frac{\Delta y}{2} + H_{x1} \Delta x - H_{y3} \frac{\Delta y}{2} - H_{y4} \frac{\Delta y}{2} - H_{x2} \Delta x = \left(\frac{\partial D_z}{\partial t} + J_z \right) \Delta x \Delta y$$

$$As \Delta y \to 0, \quad \partial D_z / \partial t \Delta x \Delta y \to 0, \quad J_z \Delta x \Delta y \to \Delta x J_{sz}$$

$$H_{x1} - H_{x2} = J_{sz}$$

That is, the tangential component of **H** is discontinuous by an amount equal to the surface current density

ANL

Conditions at a perfect conductor cont.

- From Maxwell's equations:
 - If in a conductor E=0 then dE/dT=0

- Since
$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

 H_{x2} =0 (it has no time-varying component and also cannot be established from zero)

$$H_{x1} = J_{sz}$$

The current per unit width, $J_{s,}$ along the surface of a perfect conductor is equal to the magnetic field just outside the surface:

• **H** and **J** and the surface normal, **n**, are mutually perpendicular: $\mathbf{J}_s = \mathbf{n} \times \mathbf{H}$

Summary of Boundary conditions

At a boundary between non-conducting media

$$E_{t1} = E_{t2}$$

$$H_{t1} = H_{t2}$$

$$D_{n1} = D_{n2}$$

$$B_{n1} = B_{n2}$$

$$n \times (\mathbf{E}_1 - \mathbf{E}_2) = 0$$

$$n \times (\mathbf{H}_1 - \mathbf{H}_2) = 0$$

$$n \cdot (\mathbf{D}_1 - \mathbf{D}_2) = 0$$

$$n \cdot (\mathbf{B}_1 - \mathbf{B}_2) = 0$$

At a metallic boundary (large σ)

$$n \times (\mathbf{E}_1 - \mathbf{E}_2) = 0$$

$$n \times (\mathbf{H}_1 - \mathbf{H}_2) = 0$$

$$n \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_s$$

$$n \cdot (\mathbf{B}_1 - \mathbf{B}_2) = 0$$

At a perfectly conducting boundary

$$n \times \mathbf{E}_1 = 0$$

$$n \times \mathbf{H}_1 = \mathbf{J}_s$$

$$n.\mathbf{D}_1 = \rho_s$$

$$n.\mathbf{B}_1 = 0$$

Reflection and refraction of plane waves

- At a discontinuity the change in μ , ϵ and σ results in partial reflection and transmission of a wave
- For example, consider normal incidence:

Incident wave =
$$E_i e^{j(\omega t - \beta z)}$$

Reflected wave = $E_r e^{j(\omega t + \beta z)}$

• Where E_r is a complex number determined by the boundary conditions

Reflection at a perfect conductor

- Tangential E is continuous across the boundary
- For a perfect conductor **E** just inside the surface is zero
 - -E just outside the conductor must be zero

$$E_i + E_r = 0$$

$$\Rightarrow E_i = -E_r$$

 Amplitude of reflected wave is equal to amplitude of incident wave, but reversed in phase

Standing waves

• Resultant wave at a distance -z from the interface is the sum of the incident and reflected waves

$$E_{T}(z,t) = \text{incident wave} + \text{reflected wave}$$

$$= E_{i}e^{j(\omega t - \beta z)} + E_{r}e^{j(\omega t + \beta z)}$$

$$= E_{i}\left(e^{-j\beta z} - e^{j\beta z}\right)e^{j\omega t}$$

$$= -2jE_{i}\sin\beta z \ e^{j\omega t}$$

$$\sin\phi = \frac{e^{j\phi} - e^{j\phi}}{2j}$$

and if E_i is chosen to be real

$$E_T(z,t) = \text{Re}\{-2jE_i \sin \beta z (\cos \omega t + j \sin \omega t)\}\$$

= $2E_i \sin \beta z \sin \omega t$

Standing waves cont...

$$E_T(z,t) = 2E_i \sin \beta z \sin \omega t$$

- Incident and reflected wave combine to produce a standing wave whose amplitude varies as a function ($\sin \beta z$) of displacement from the interface
- Maximum amplitude is twice that of incident fields

advanced photon source

Reflection from a perfect conductor

ANL

Reflection from a perfect conductor

• Direction of propagation is given by **E**×**H**If the incident wave is polarised along the *y* axis:

then
$$E_{i} = \mathbf{a}_{y} E_{yi}$$

$$\Rightarrow H_{i} = -\mathbf{a}_{x} H_{xi}$$

$$\mathbf{E} \times \mathbf{H} = (-\mathbf{a}_{y} \times \mathbf{a}_{x}) E_{yi} H_{xi}$$

$$= +\mathbf{a}_{z} E_{yi} H_{xi}$$

That is, a z-directed wave.

For the reflected wave $\mathbf{E} \times \mathbf{H} = -\mathbf{a}_z E_{yi} H_{xi}$ and $E_r = -\mathbf{a}_y E_{yi}$ So $H_r = -\mathbf{a}_x H_{xi} = H_i$ and the magnetic field is reflected without change in phase

Reflection from a perfect conductor

• Given that $\cos \phi = \frac{e^{j\phi} + e^{-j\phi}}{2}$

$$H_{T}(z,t) = H_{i}e^{j(\omega t - \beta z)} + H_{r}e^{j(\omega t + \beta z)}$$

$$= H_{i}(e^{j\beta z} + e^{-j\beta z})e^{j\omega t}$$

$$= 2H_{i}\cos\beta z \ e^{j\omega t}$$

As for E_i , H_i is real (they are in phase), therefore

$$H_T(z,t) = \text{Re}\{2H_i \cos \beta z (\cos \omega t + j \sin \omega t)\} = 2H_i \cos \beta z \cos \omega t$$

Reflection from a perfect conductor

$$H_T(z,t) = 2H_i \cos \beta z \cos \omega t$$

- Resultant magnetic field strength also has a standing-wave distribution
- In contrast to **E**, **H** has a maximum at the surface and zeros at $(2n+1)\lambda/4$ from the surface:

Reflection from a perfect conductor

$$E_T(z,t) = 2E_i \sin \beta z \sin \omega t$$

$$H_T(z,t) = 2H_i \cos \beta z \cos \omega t$$

- E_T and H_T are $\pi/2$ out of phase $(\sin \omega t = \cos(\omega t \pi/2))$
- No net power flow as expected
 - power flow in +z direction is equal to power flow in z
 direction

Reflection by a perfect dielectric

- Reflection by a perfect dielectric ($J=\sigma E=0$)
 - no loss
- Wave is incident normally
 - E and H parallel to surface
- There are incident, reflected (in medium 1) and transmitted waves (in medium 2):

Reflection from a lossless dielectric

RF and Microwave Physics

Fall 2002

ANL

Reflection by a lossless dielectric

$$E_{i} = \eta_{1}H_{i}$$

$$E_{r} = -\eta_{1}H_{r}$$

$$E_{t} = \eta_{2}H_{t}$$

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon_o\varepsilon_r}} = \sqrt{\frac{\mu}{\varepsilon}}$$

• Continuity of E and H at boundary requires:

$$E_i + E_r = E_t$$
$$H_i + H_r = H_t$$

Which can be combined to give

$$H_i + H_r = \frac{1}{\eta_1} (E_i - E_r) = H_t = \frac{1}{\eta_2} E_t = \frac{1}{\eta_2} (E_i + E_r)$$

$$\frac{1}{\eta_1} (E_i - E_r) = \frac{1}{\eta_2} (E_i + E_r) \Longrightarrow$$

$$\Rightarrow \eta_2(E_i - E_r) = \eta_1(E_i + E_r)$$

$$\Rightarrow E_i(\eta_2 - \eta_1) = E_r(\eta_2 + \eta_1)$$

$$\rho_E = \frac{E_r}{E_i} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$

The reflection coefficient

Reflection by a lossless dielectric

$$E_i + E_r = E_t$$
$$H_i + H_r = H_t$$

Similarly

$$\tau_E = \frac{E_t}{E_i} = \frac{E_r + E_i}{E_i} = \frac{E_r}{E_i} + 1 = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} + \frac{\eta_2 + \eta_1}{\eta_2 + \eta_1} = \frac{2\eta_2}{\eta_2 + \eta_1}$$

$$\tau_E = \frac{2\eta_2}{\eta_2 + \eta_1}$$

The transmission coefficient

Reflection by a lossless dielectric

• Furthermore:

$$\begin{split} &\frac{H_r}{H_i} = -\frac{E_r}{E_i} = \rho_H \\ &\frac{H_t}{H_i} = \frac{\eta_1 E_t}{\eta_2 E_i} = \frac{\eta_1}{\eta_2} \frac{2\eta_2}{\eta_2 + \eta_1} = \frac{2\eta_1}{\eta_2 + \eta_1} \tau_H \end{split}$$

And because $\mu = \mu_0$ for all low-loss dielectrics

$$\begin{split} \rho_E &= \frac{E_r}{E_i} = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}} = \frac{n_1 - n_2}{n_1 + n_2} = -\rho_H \\ \tau_E &= \frac{E_r}{E_i} = \frac{2\sqrt{\varepsilon_1}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}} = \frac{2n_1}{n_1 + n_2} \\ \tau_H &= \frac{2\sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}} = \frac{2n_2}{n_1 + n_2} \end{split}$$

Energy Transport - Poynting Vector

Electric and Magnetic Energy Density:

For an electromagnetic plane wave

$$\overline{E}_y(x,t)$$
 = $\overline{E}_0 \sin(kx - \omega t)$
 $\overline{B}_Z(x,t)$ = $\overline{B}_0 \sin(kx - \omega t)$
where $B_0 = E_0/c$

The electric energy density is given by

$$u_E = \frac{1}{2}\varepsilon_0 E^2 = \frac{1}{2}\varepsilon_0 \overline{E}_0^2 \sin^2(kx - \omega t)$$
 and the magnetic energy is

$$u_B = \frac{1}{2\mu_0}B^2 = \frac{1}{2\mu_0c}\bar{E}^2 = u_E$$
 Note: I used

$$\overline{E} = c\overline{B}$$

Energy Transport - Poynting Vector cont.

Thus, for light the electric and the magnetic field energy densities are equal and the total energy density is

$$u_{total} = u_E + u_B = \varepsilon_0 E^2 = \frac{1}{\mu_0} B^2 = \varepsilon_0 \overline{E}_0^2 \sin^2(kx - \omega t)$$

Poynting Vector
$$\left(\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \right)$$
:

The direction of the Poynting Vector is the direction of energy flow and the magnitude

$$\left(S = \frac{1}{\mu_0} EB = \frac{E^2}{\mu_0 c} = \frac{1}{A} \frac{dU}{dt}\right)$$

Is the energy per unit time per unit area (units of Watts/m²).

Energy Transport - Poynting Vector cont.

Proof:

$$dU_{total} = u_{total}V = \varepsilon_0 E^2 Acdt \text{ so}$$

$$S = \frac{1}{A} \frac{dU}{dt} = \varepsilon_0 c E^2 = \frac{E^2}{\mu_0 c} = \frac{E_0^2}{\mu_0 c} sin^2 (kx - \omega t)$$

Intensity of the Radiation (Watts/m²):

The intensity, I, is the average of S as follows:

$$I = \overline{S} = \frac{1}{A} \frac{d\overline{U}}{dt} = \frac{E_0^2}{\mu_0 c} \left\langle \sin^2(kx - \omega t) \right\rangle = \frac{E^2}{2\mu_0 c}.$$

Ohm's law

$$\bar{J} = \sigma \bar{E}$$

Skin depth

Current density decays exponentially from the surface into the interior of the conductor

Phasors

Fictitious way of dealing with AC circuits

Phasors cont.

Phasors in lumped circuit analysis have no space components

Phasors in distributed circuit analysis (RF) have a space component because they act as waves

$$\mathbf{v}(x,t) = Re \left\{ V_0 e^{\pm j\beta X} e^{j\omega t} \right\} = V_0 \cos(\omega t \pm \beta x)$$

Generic Transmission Line

Line termination

At line input side:

$$V_{AA'} = V_0 \cos(\omega t)$$

At line output side:

$$V_{BB'} = V_0 \cos \left[\omega \left(t - \frac{\ell}{c} \right) \right]$$

Is this a wave?

$$\frac{\omega}{c} = \beta \implies V_{BB'} = V_0 \cos[\omega t - \beta \ell]$$

Basic Measurement procedure of a transmission line

Voltage is sampled at t = 0

$$V_{AA'} = V_0 \cos(0) = V_0$$

For length of 10 cm, f = 1KHz

$$V_{BB'} = V_0 \cos \left[\frac{2\pi \times 1kHz \times \ell}{c} \right] = 0.999...8V_0$$

For length of 10 cm, f = 1KHz

$$V_{BB'} = V_0 \cos \left[\frac{2\pi \times 1GHz \times \ell}{c} \right] = -0.5V_0$$

advanced photon source

What if low frequency, but long wire?

Frequency f = 1kHz, but length = 20 km (phone line)

$$V_{BB'} = V_0 \cos \left[\frac{2\pi \times 1kHz \times 20km}{c} \right] = 0.91V_0$$

Key point: trade-off space/ frequency

$$\frac{\omega \ell}{c} = \frac{2\pi \ell}{\lambda} = 2\pi \frac{\ell}{\lambda}$$

$$\frac{\ell}{\lambda} \to 0.01 \Rightarrow \cos(2\pi \times 0.01) \approx 1!$$
 $\frac{\ell}{\lambda} \leq 0.01$

$$\frac{\ell}{\lambda} \geq 0.01$$
 Included

$$\frac{\ell}{\lambda} \leq 0.01$$

Trans. **Effects**

Types of Transmission Lines

TEM Transmission Lines

Higher Order Transmission Lines

A few Transmission Line Systems

Twin-wire pair

Coaxial cable (self shielding)

A few Transmission Line Systems (cont.)

Common Feature of Different Transmission Lines

Traveling Voltage and Current Waves

$$\frac{d^{2}\widetilde{V}(z)}{dz^{2}} - \gamma^{2}\widetilde{V}(z) = 0$$

$$\frac{d^{2}\widetilde{I}(z)}{dz^{2}} - \gamma^{2}\widetilde{I}(z) = 0$$

$$\gamma = \alpha + j\beta = \sqrt{(R' + j\omega L')(G' + j\omega C')}$$

$$\widetilde{V}(z) = V_0^+ e^{-\alpha z} e^{-\beta z} + V_0^- e^{+\alpha z} e^{+\beta z}$$

$$\widetilde{I}(z) = \frac{V_0^+}{Z_0} e^{-\alpha z} e^{-\beta z} - \frac{V_0^-}{Z_0} e^{+\alpha z} e^{+\beta z}$$

$$Z_0 = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}}$$
 Characteristic line impedance

Significance of Characteristic Line Impedance

Independent of length

- Incorporates specific line parameters (coax,micro-strip,parallel-plate,etc.)
- Has absolutely nothing in common with the circuit element impedance

4 Characteristic line impedance defines wave ratio

$$\frac{V_0^+}{I_0^+} = -\frac{V_0^-}{I_0^-}$$

4 Lossless line impedance

Lossless Transmission Line

$$Z_0 = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} \approx \sqrt{\frac{L'}{C'}}$$

Real characteristic line impedance

Implies

$$\alpha = 0$$
 in $\gamma = \alpha + j\beta = \sqrt{(R' + j\omega L')(G' + j\omega C')} = j\omega\sqrt{L'C'}$

and

$$u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{L'C'}}$$

Phase velocity

$$\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{\omega\sqrt{L'C'}}$$

Wave length

Reflection Coefficient

- Any impedance mismatch causes reflections
- Is normally a complex quantity
- Is directionally dependent (looking into the load or the source)

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0} = |\Gamma| e^{j\theta_r}$$

Standing Wave along a transmission line

■ There are three special cases of termination:

- Matched line: $Z_L = Z_0 \Rightarrow \Gamma = 0$
- Short circuit: $Z_L = 0 \Rightarrow \Gamma = -1$
- M Open circuit: $Z_L = ∞ ⇒ Γ = 1$

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0} = |\Gamma| e^{j\theta_r}$$

Voltage behavior for the three cases:

How to quantify the amount of mismatch?

Arbitrary complex impedance

Voltage standing wave ratio

$$\textit{VSWR} = S = \frac{|\widetilde{V}|_{max}}{|\widetilde{V}|_{min}} = \frac{1 + |\Gamma|}{1 - |\Gamma|} \qquad \qquad \text{VSWR} = 1 \text{ (matched)}$$

$$\text{VSWR} = \infty \text{ (short/open)}$$

Input impedance of a terminated transmission line

Idea is to compute the input impedance of a loaded transmission line in terms of the total voltage and current waves.

advanced photon source

Voltage and current expressions

$$\widetilde{V}(z) = V_0^+ \left(e^{-J\beta z} + \Gamma e^{J\beta z} \right) \widetilde{I}(z) = \frac{V_0^+}{Z_0} \left(e^{-J\beta z} - \Gamma e^{J\beta z} \right)$$

$$Z_{in}(z) = \frac{\widetilde{V}(z)}{\widetilde{I}(z)} = Z_0 \frac{1 + \Gamma e^{j2\beta z}}{1 - \Gamma e^{j2\beta z}}$$

$$Z_{in}(z) = Z_0 \frac{Z_L + jZ_0 \tan(\beta \ell)}{Z_0 + jZ_L \tan(\beta \ell)}$$

$$\widetilde{I}(z) = \frac{V_0^+}{Z_0} \left(e^{-j\beta z} - \Gamma e^{j\beta z} \right)$$

Transmission line

Important T.L. equation

■ Including the generator into the T.L.

Special cases of lossless line

Input impedance can be changed almost arbitrarily depending on line length, frequency, and termination conditions.

Short circuit T.L.

$$Z_{in}^{sc}(-\ell) = jZ_0 \tan(\beta \ell) = jX_{in}$$

For a given inductance (L_{eq})

$$\ell = \frac{1}{\beta} \tan^{-1} \left(\frac{\omega L_{eq}}{Z_0} \right)$$

For a given capacitance (C_{eq})

ANL

$$\ell = \frac{1}{\beta} \left\{ \pi - tan^{-1} \left(\frac{1}{\omega Z_0 C_{eq}} \right) \right\}$$

Open circuit T.L.

$$Z_{in}^{os}(-\ell) = -jZ_0 \cot(\beta \ell) = jX_{in}$$

A similar procedure applies. However, an open circuit condition is difficult to enforce for high frequency opreation frequencies.

■ How to measure Characteristic line impedance and propagation constant?

$$Z_{in}^{sc}(-\ell) = jZ_0 \tan(\beta \ell)$$

$$Z_{in}^{sc}(-\ell) = -jZ_0 \cot(\beta \ell)$$

$$Z_{in}^{os}(-\ell) = -jZ_0 \cot(\beta \ell)$$

$$Z_{in}^{os}(-\ell) = -jZ_0 \cot(\beta \ell)$$

$$Z_{in}^{os}(-\ell) = -jZ_0 \cot(\beta \ell)$$

Conducting an open/short circuit measurement test with a NWA or VVM yields the characteristic line impedance.

Lambda-half line ($\ell = n\lambda/2$)

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan(\beta \ell)}{Z_0 + jZ_0 \tan(\beta \ell)} Z_L$$

$$\frac{Z_L}{\tan(m\pi) = 0}$$

If the line length is multiples of $\,\lambda/2\,$, it is as if the T.L. is not present!

Lambda-quarter transformer

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan(\beta \ell)}{Z_0 + jZ_0 \tan(\beta \ell)} tan(m\pi/2) \rightarrow \infty$$

$$\frac{Z_0^2}{Z_L}$$

This transformation is of significant practical interest, since it allows us to match a given load impedance to a particular line impedance.

$$Z_{02} = \sqrt{Z_{01}Z_L}$$

Required impedance for matching element

Power flow consideration along a lossless line

Generic average power definition

$$P_{av} = \frac{1}{2} Re \left\{ \widetilde{V} \cdot \widetilde{I}^* \right\}$$

Basic power definition applies to total voltage and current expressions. For transmission lines, this means:

$$\widetilde{V} = \widetilde{V}_{i} + \widetilde{V}_{r}$$
 and $\widetilde{I} = \widetilde{I}_{i} + \widetilde{I}_{r}$

Voltage/current must be split into forward and backward traveling wave components

■ For a transmission line we need to modify our general power expression

$$\widetilde{V}_{i} = V_{0}^{+} \\
\widetilde{I}_{i} = \frac{V_{0}^{+}}{Z_{0}}$$

$$P_{av}^{i} = \frac{|V_{0}^{+}|^{2}}{2Z_{0}}$$

$$\widetilde{V}^{r} = \Gamma V_0^{+}$$

$$\widetilde{I}^{r} = -\Gamma \frac{V_0^{+}}{Z_0}$$

$$P_{av}^{r} = -|\Gamma|^{2} \frac{|V_{0}^{+}|^{2}}{2Z_{0}} = -|\Gamma|^{2} P_{av}^{i}$$

Electrical properties of Materials

Classification of materials can be done by their conductivity.

Conductors

Semi-conductors

Insulators

$$\approx 10^{7} \ S \cdot m^{-1} \approx 10^{-3} S \cdot m^{-1} \approx 10^{-15} S \cdot m^{-1}$$
$$\left(1S \cdot m^{-1} = 1 mho \cdot m^{-1}\right)$$

Current is composed of two charged carriers

$$J = J_e + J_h = \rho_{V_e} u_e + \rho_{V_h} u_h = (\rho_{V_e} \mu_e + \rho_{V_h} \mu_h) E = \sigma E$$

Resistance

$$R = \frac{V}{I} = \frac{l}{\sigma A}$$

Voltage drop

$$V = -\int_{2}^{1} E \cdot d\ell = E_{X}\ell$$

Current

$$I = -\int_{2}^{1} J \cdot dS = \sigma E_X A$$

In general

$$R = \frac{-\int E \cdot d\ell}{\iint J \cdot dS} = \frac{-\int E \cdot d\ell}{\iint \sigma E \cdot dS}$$

Conductance of a coax-cable

$$J = \hat{r} \frac{I}{2\pi n}$$

$$E = \hat{r} \frac{I}{2\pi \sigma n}$$

$$V_{ab} = -\int_{b}^{a} \frac{I}{2\pi\sigma\ell} \frac{dr}{r} = \frac{I}{2\pi\sigma\ell} \ln\left(\frac{b}{a}\right)$$

$$G' = \frac{G}{\ell} = \frac{2\pi\sigma}{\ln\left(\frac{b}{a}\right)}$$

$$G' = \frac{G}{\ell} = \frac{2\pi\sigma}{\ln\left(\frac{b}{a}\right)}$$